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New Methods Used to Investigate
the Control of Mucus Secretion and
Ion Transport in Airways
by Brian Davis* and Jay A. Nadel*

Our group developed two in vivo methods to study secretions from submucosal glands in exposed tracheal
epithelium. (1) The exposed mucosal surface was coated with powdered tantalum; accumulated secretions
produced elevations (hillocks) in the tantalum layer under which the duct openings were located. The rate of
formation of the hillocks was observed through a dissecting microscope, and recorded by television on a
video tape recorder. (2) Micropipets were used to collect timed samples from individual gland duct
openings. With these techniques, the innervation of the submucosal glands and the autonomic regulation of
their secretions were studied.
We studied the control of ion movement across tracheal epithelium because active ion transport forms

local osmotic gradients across epithelia which could regulate transepithelial water movement. We mounted
pieces of the posterior wall of dog trachea in Ussing-type chambers and measured unidirectional fluxes of
Cl- and Na+ under short-circuit conditions with 36Cl and 24Na. We found active transport ofCl- toward the
lumen and Na+ toward the submucosa. With this technique we investigated the effect of parasym-
pathomimetic drugs on ion movement.
With a new in vitro method we studied output of35bhound to sulfated mucins and movement of ions in cat

trachea. We mounted pieces of anterior tracheal wall in Ussing-type chambers, added sodium 35S-sulfate to
the submucosal side and monitored secretion of bound 35S in samples from the luminal side after dialysis.
The unidirectional fluxes ofCl- and Na+ were measured with 36Cl and 22Na. With this method we examined
the effect of a-adrenergic and (-adrenergic agonists on mucin secretion and ion movement. Also with this
preparation we studied the relationship between the permeability of the paracellular pathway to 14C_
sucrose and the pattern of tight junction strands.

Introduction
Mucins secreted from submucosal glands and

surface epithelial cells combine with water to form
the respiratory tract secretions. The secretions with
trapped inhaled particles are moved up the airway to
the mouth by the sweeping action of the cilia. This
clearing process may be controlled by neurotrans-
mitters or mediators acting on secretion of mucin
from submucosal glands and from surface epithelial
cells, on the composition or consistency of mucus,
on the interaction of the cilia with the mucus layer,
and on the rate of ciliary beating. These controls may
be altered by environmental toxins, infections, in-
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flammatory responses or abnormal biochemical
pathways and cause disease.
Knowledge gained from previous studies of air-

way epithelium has recently been reviewed (1). In
the past, studies of respiratory tract secretions in
man depended on the collection of sputum (24)
which is contaminated by saliva and nasal mucus, or
on the collection of samples of mucus secretion via
a tracheostomy (4). Knowledge ofthe action ofdrugs
and mediators on mucus secretion was inferred from
measurements of respiratory tract secretions in ani-
mals (5-7) or from changes in volume in a fluid-filled
segment of trachea (8). These older methods do not
localize the source of the secretions to submucosal
glands or surface epithelial cells; therefore, they
cannot be used to examine the control of secretion.

In this review we describe new methods for
studying the control of mucus secretions that we
developed using preparations of trachea in vivo and
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in vitro. Preliminary descriptions of some of these
methods have been published previously (9-15). The
methods provide direct evidence of secretion from
the submucosal glands and allow us to study the
functions of airway epithelium under well controlled
conditions.

In Vivo Techniques
To study the control of secretion of individual

mucus glands, we developed techniques which will
allow us to study the submucosal gland as a
physiological subunit in vivo. We anesthetize dogs
and ventilate the lungs artificially by using a Harvard
pump. Both vagus nerves are dissected free and
placed on stimulating electrodes. We make an inci-
sion in the anterior midline of the upper two-thirds of
the trachea and pull the cut edges apart widely to
expose the epithelial surface. A fine powder of inert
metal, (tantalum) is then sprayed onto the epithelial

surface. Since the normal dispersion of secretions
from the submucosal glands is prevented, elevations
in the tantalum layer at the sites of the submucosal
gland duct openings appear during secretory activity
(Fig. 1). These elevations which are caused by sub-
mucosal gland secretion are called "hillocks." We
have demonstrated that our new technique is suit-
able for neurophysiological studies. In each obser-
vation period, after the previously secreted mucus
has been removed by wiping, the mucosal surface is
coated with powdered tantalum and photographed
through a dissecting microscope (magnification,
6x). We photograph the tantalum layer over the
same area of epithelium at one-half minute intervals
during baseline conditions and after stimulating
either the superior laryngeal or recurrent laryngeal
nerve electrically. The number of hillocks on each
photograph is counted and divided by the area of
epithelium to obtain the numbers of hillocks per
square centimeter. These studies show that sub-

FIGURE 1. Photograph obtained through a dissecting microscope of hillocks on tantalum-coated canine
tracheal epithelium produced by electrical stimulation of a superior laryngeal nerve. The tantalum
prevented the normal dispersion of the secretions from the mucus glands. The hillocks, caused by
accumulated secretions, averaged 0.2 mm in diameter.
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mucosal gland secretion is increased by electrical
stimulation of the superior laryngeal and recurrent
laryngeal nerves (9). We are able to prevent the
secretomotor effect of stimulating the motor
branches of the vagus nerve by atropine sulfate given
intravenously or locally, indicating that the secreto-
motor effect involves postganglionic cholinergic
pathways.
The measurement of the number of hillocks per

square centimeter of tracheal epithelium does not
provide evidence about secretion from individual
submucosal glands; therefore we modified our
photographic measuring system (16). Now we vis-
ualize the hillocks with a television camera attached
to a dissecting microscope, record their images with
a videotape recorder and view the field during the
experiment on a television monitor. A record of time
is simultaneously displayed on the monitor and re-
corded on videotape. Thus, we make a continuous
record of the secretion from individual submucosal
glands; the rate of secretion can be estimated from
the increase in the size of a hillock with time. We
divide the observed field into six sections and mea-
sure the diameter of one round hillock in each sec-
tion if that is possible.
We measure the diameters of the hillocks using a

split-video image measuring device (Instrumentation
for Physiology and Medicine, San Diego). The im-
ages of the hillocks are played back from a videotape
recorder onto the screen of a modified television
monitor. The image is held on the screen by stopping
the videotape recorder at any desired time. To mea-
sure the diameter ofa hillock, we select the line in the
video image which runs along the diameter of the
hillock, offset electrically the upper part of the image

of the hillock, and displace it from the lower part of
the image of the hillock by the length ofone diameter
(Fig. 2). The distance moved, which equals the di-
ameter of the hillock, is shown on a digital scale,
which we convert to mm with a calibration factor.
This measuring device allows us to measure the di-
ameters of hillocks at frequent short time intervals
(Fig. 3). To estimate the rate of secretion of indi-
vidual glands we assume that each hillock is hemis-
pherical, and calculate the volumes of the hemis-
pheres from the measured diameters. Although this
provides only an estimate of the volume of secretion,
it emphasizes the large changes in volume that occur
with small changes in the diameter of a hillock (vol-
ume of a hemisphere = 7rd3I12).
To examine the secretory response of the sub-

mucosal glands to nervous or pharmacological
stimuli, we measure the increase of number of hill-
ocks per square centimeter during baseline condi-
tions and after a stimulus. This method allows us to
measure the pattern of the secretory response of
individual glands to different stimuli (Fig. 3). Our
studies with the method show that an a-adrenergic
agonist, phenylephrine, causes secretion from
canine tracheal mucus glands. The effect is smaller
than the stimulatory effect of eldctrical stimulation of
cholinergic efferent fibers in the superior laryngeal
nerve (17). The difference in the response to the two
stimuli may be due to the fact that phenylephrine has
a constrictive effect on the local blood supply to the
trachea (Fig. 4).
Another technique for studying submucosal gland

secretion, which has been developed in our labora-
tory (18), allows the secretion from a single sub-
mucosal gland to be collected into a micropipet. Cat
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FIGURE 2. Drawing of the screen of a video-image measuring monitor showing a picture of hillocks
projected from a tape recorder. The image ofone hillock has been split along its diameter by offsetting
electrically the upper part of the picture from the lower part. The distance moved by the offset image
was measured electrically.
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tracheal glands are studied because the secretions
from these glands are watery and can be collected
easily into a capillary tube. In anesthetized cats ven-
tilated via the lower trachea, the tracheal mucosa is
exposed and covered with Hepes oil equilibrated
with water. To visualize the gland duct openings we
stain them in vivo with neutral red dye (0.1% solu-
tion) applied to the luminal surface of the epithelium
and observe them through a dissecting microscope.
With experience we are able to recognize the gland
duct openings by their elliptical shape and therefore
we no longer use neutral red. To collect the secretion
we use oil-filled constant-bore pipets bent at their
ends to an angle of 30°-45°. The tips of the pipets are
fire-polished to prevent damage to the epithelial
surface. The tip of the pipet is placed over a gland
duct opening, so that the opening is surrounded and
can only discharge its secretion into the capillary
lumen. We start the flow by applying slight negative
pressure with a syringe to the end of the micropipet.
Secretion is collected for 1 min, and then oil is aspi-
rated into the capillary lumen to isolate the sample;
two or three samples are collected into one micro-
pipet and the volume of each sample is calculated by
measuring the length of the fluid column using a
vernier micrometer and a stereomicroscope. The
volumes of sequential 1 -min samples collected from
the same gland duct vary very little over periods up
to 4 hr. We used this method to show that the rate of
secretion from the glands was increased by electrical
stimulation of the vagus nerves and by intravenous
injection of phenylephrine (15, 18).

In Vitro Techniques
The effect of physiological and pharmacological

agents on secretion of mucus cannot at present be
adequately studied using only tissues in vivo.
Therefore, we developed an in vitro preparation of
cat trachea for the study of mucus secretion. We
mount pieces of the anterior part of the trachea (ex-
posed area, 1.3 cm2) as flat sheets between the two
halves of a modified Ussing chamber (Fig. 5). The
pieces of tissue, composed of pseudostratified
epithelium, submucosal glands, connective tissue,
and cartilage, are approximately 1 mm thick. We
placed a thin Parafilm ring between the epithelial
surface of the tissue and one-half of the Ussing
chamber to help form a seal between the tissue and
the chamber, and to help minimize edge damage.

One-half of the Ussing chamber has six sharpened
pins equally spaced around the medial edge which
we push through a section of the trachea, pinning it to
a block of paraffin wax. The pins hold the tracheal
section flat across the chamber. After cutting the
section free from the remaining trachea, we insert
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FIGURE 3. Graph of measurements of diameter of hillocks made
each 2.5 sec during a control period of 60 sec and during a
60 sec period after injection of 40 ,ug of phenylephrine (PE),
into a cranial thyroid artery of a dog.

the pins into corresponding holes in the other half of
the chamber to close it. We connect each half of the
Ussing chamber to a glass perfusion chamber (MRA,
Clearwater, Florida) and perfuse both sides of the
chamber with 10 ml of oxygenated (95% 02, 5% C02)
Krebs-Henseleit solution, warmed to 370 C to main-
tain viability (Fig. 5).
We measure electrical potential difference across

the epithelium via two agar-KCI (1 M) bridges posi-
tioned in the electrolyte solution on either side of the
trachea 2 mm from the surface and connected
through calomel half cells to a high impedance mil-
livoltmeter. We measure the short-circuit current
(expressed as uA/cm2 of tissue) via two agar-NaCl
(0.15 M) bridges which carry direct current to the
electrolyte solution from an automatic voltage clamp
connected to the agar-salt bridges by silver/silver
chloride junctions. To calculate the resistance of the
tissues, we divide the potential difference by the
short-circuit current. The relationship between the
clamped voltage and the current needed to clamp it is
linear over the range +40 mV to -60 mV. Potential
difference and short-circuit current, measured every
15 min during the experiment, are used to monitor
the viability of the tissue.
To study the effects of a drug on sulfated mucin

secretion and Cl- and Na+ fluxes, we measure sul-
fated mucin secretion, bidirectional fluxes ofCl- and
bidirectionil fluxes of Na+ in separate pieces of tis-
sue before and after the addition of the test drug.

35S-Sulfate is taken up by the mucus-secreting
cells of the cat trachea, and is released into the air-
way lumen bound to glycoproteins (19). For this
reason, we use the secretion of bound 35S into the
luminal side of the chamber as a measure of
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FIGURE 4. Angiograms ofcanine tracheal vessels produced by injecting dye through a cannula in the right
cranial thyroid artery (A) I min after injection of 2 ml of saline and (B) I min after injection of
phenylephrine 40 ,ug in 2 ml of saline. Phenylephrine caused constriction of the tracheal vessels
(arrows).

sulfated-glycoprotein secretion. We add 1.0 mCi
sodium 35S-sulfate to the submucosal side of the
tissue; every 30 min we collect the solution bathing
the luminal side of the tissue and replace it with fresh
Krebs-Henseleit solution. Samples are collected for
a control period of 3-4 hr. The test drug is added to
the submucosal side of the tissue for one 30-min
sampling period and subsequently washed out. Sam-
ples are collected for 1-2 hr after the drug is washed
out. The samples obtained are placed in dialysis
tubing bags (average pore radius permeability 24 A,
VWR Scientific) and dialyzed against distilled water
to remove unbound 35S-sulfate. Up to 30 of these
samples are placed in 4 liters of distilled water; this
water is exchanged six times during a 48 hr period.
To each of the first four volumes of dialysis water we
add nonradioactive sodium sulfate (0.5 g) to displace
noncovalently bound 35S-sulfate, and we add sodium
azide (0.5 g) to prevent fungal and bacterial growth.
The last two dialyses are against 20mM phosphate

buffer, which helps to disperse the mucins. On the
completion of dialysis, a 0.6 ml aliquot of each sam-
ple is taken, mixed with 4.0 ml of scintillation fluid
(PCS; Amersham) and the bound 35S is counted in a
al-scintillation counter (Liquid Scintillation System
MK III, Searle Analytic). The output is expressed as
counts per minute per square centimeter of tissue per
hour (cpm/cm2-hr).
To measure the fluxes of Cl- and Na+ across the

tissue, we add Krebs-Henseleit solution which con-
tains either 5-10 /iCi 3GC or 2-5 ACi 22Na to one side
of the chamber, and measure the rate of appearance
of radioactivity on the other side. We obtain samples
by collecting the solution from the appropriate side
of the chamber and replacing it with fresh Krebs-
Henseleit solution every 30 min. We collect samples
for a control period of 2 hr, add the test drug to the
submucosal side ofthe tissue for one 30 min sampling
period, and subsequently remove the drug by wash-
ing. Samples are collected for I hr after the drug is
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FIGURE 5. Ussing chamber, glass perfusion chamber and electri-
cal circuits. A piece (1.2 cm2) of trachea (A) bathed on each
surface by Krebs-Henseleit solution warmed to 37°C in a
heating jacket (B) which is connected to a water pump and
heater (C). The solution is circulated and oxygenated by
bubbling it with 95% 02, 5% C02 (D). Electrical potential
difference is measured with KCI-agar bridges (E) connected
via calomel half cells (F) to an electrometer (G). The trachea is
short-circuited by passing current to the electrolyte solution
via saline-agar bridges (H) from an external source (I) regu-
lated by an automatic voltage clamp (J) to keep the spontane-
ous electrical potential difference at zero. The short-circuit
current is measured by a milliammeter (K).

removed. A 0.6-mi aliquot of each of these samples is
taken, mixed with 4.0 ml scintillation fluid, and the
radioactivity counted in a /3-scintillation counter.
From the specific activities of the 36CI and 22Na
source solutions we are able to calculate the ion
fluxes in microequivalents per square centimeter of
tissue per hour (tLEq/cm2-hr). When we have mea-
sured the flux of an ion in one direction, we wash out
both sides of the chamber and measure the flux of the
same ion in the opposite direction, before and after
the test drug, in the same piece of tissue.

All fluxes are measured under open-circuit condi-
tions, except for a few seconds (less than 5 sec)

every 15 min when short-circuit current is mea-
sured. Electrical potential difference and short-
circuit current are measured every 5 min during the
30 min period that the test drug is in the chamber.

This new method for studying respiratory tract
secretion has the following advantages over other
in vitro methods: we can measure mucus output and
ion transport in similar pieces of trachea from the
cat, under well controlled conditions for periods up
to 10 hr. We can assess the viability of the tissue by
electrical measurements during the experiments and
by electron microscopy after the experiments. Using
this method we found that an a-adrenergic agonist
(phenylephrine) and a, 3-adrenergic agonist (terbuta-
line) both stimulated the secretion of sulfated mucins
and net ion movement into the lumen (10, 20). The
effects ofa-adrenergic and f3-adrenergic stimuli were
different. Phenylephrine caused large increases in
the output of sulfated mucin, and in the net fluxes of
C1- and Na+ toward the lumen; terbutaline caused a
moderate increase in the output of sulfated mucin,
and a small increase in net Cl- flux toward the lumen;
it did not affect either unidirectional flux of Na+.
From these findings we predict that phenylephrine
will cause more ion-mediated water secretion than
terbutaline. Thus, phenylephrine may act to produce
more water in the respiratory tract secretions.

Originally we used trachea mounted in an Ussing
chamber to study ion movement across canine
tracheal epithelium (21) (Fig. 6). In epithelia, ion
movement induces transepithelial movement of
water by creating local osmotic gradients in the lat-
eral intercellular spaces (22, 23). Therefore, we rea-
soned that active ion transport was likely to regulate
the rate of water secretion into the airway. Changes
in ion mediated secretion of water may alter the
consistency of respiratory tract fluid and change the
depth of the periciliary fluid layer. The periciliary
fluid layer is important for the regulation of
mucociliary clearance. With too much periciliary
fluid, the propulsive effect of the cilia will not reach
the mucus gel layer; with too little periciliary fluid,
the ciliary motion will be blocked by the weight and
resistance of the gel layer. Thus, the regulation of
water secretion into the periciliary fluid could be an
important determinant of mucociliary clearance
rates.
To study ion movement we used Ussing's short-

circuit current method and the posterior membran-
ous part of the trachea of dogs. We found net move-
ment of Cl- toward the lumen (2.7 + 0.6 ,uEq/cm2-hr)
and net movement ofNa+ toward the submucosa (0.8
+ 0.2 gEq/cm2-hr). These net ion fluxes measured
under short-circuit conditions were associated with a
spontaneous transepithelial electrical potential (30.7
+ 2.7 mV) and a short-circuit current (108 + 8
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FIGURE 6. Electron micrograph of a ciliated cell prepared from canine tracheal epithelium which had been mounted in an Ussing chamber
for 8 hr. The ultrastructure of the cell and junctions appear normal.
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FIGURE 7. Freeze fracture through the tightjunction of a ciliated cell in cat trachea which was removed from an Ussing chamber after 6 hr.
The junction is formed by parallel strands with a few interconnections.

juA/cm2) (21). Thus, C1- and Na+ must be actively
transported across canine tracheal epithelium. By
forming local osmotic gradients ions may regulate
movement of water into the tracheobronchial sec-
tions (14, 24).

Mediators and drugs which mimic the actions of
the autonomic nervous system affect ion movement
across the trachea. Histamine increased net move-
ment of C1- and Na+ toward the tracheal lumen; the
response was prevented by an Hi-antagonist but not
by an H2-antagonist (25). Acetylcholine increased
net movement of C1- and Na+ toward the lumen; the

response was prevented by small concentrations of
atropine (26). Terbutaline, a specific /82-adrenergic
agonist, increased net movement toward the lumen
of C1-, but not of Na+; the effect was prevented by
propranolol (27,28). We speculate that ion-mediated
water secretion into the airway can be altered by
mediators and neurotransmitters.

Active transport in tracheal epithelium was af-
fected by drugs which inhibit ion transport in other
epithelia. Furosemide reduced net C1- movement
toward the lumen when added to the submucosal
side, but not when added to the luminal side of the
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trachea (29). Ouabain was bound to more sites on the
submucosal membranes than the luminal mem-
branes of the tracheal surface epithelial cells (30); the
drug inhibits Na+ transport when added to the sub-
mucosal side of the trachea but has little effect when
added to the luminal surface of the epithelium. The
transepithelial movement of C1- depends on co-
existing active Na+ transport, since net C1- move-
ment is greatly reduced by replacement ofNa+ in the
bathing solution (31-33) and by adding ouabain, an
inhibitor of sodium pumps, to the submucosal bath-
ing solution (31, 33). Further studies will be neces-
sary to determine the cells responsible for the active
ion transport and the exact systems involved.
We use the in vitro preparation ofcat trachea in an

Ussing chamber to study epithelial permeability and
electrical properties and the pattern of tight junction
strands in the same piece of epithelium (11). In each
tissue we measure electrical potential difference,
short-circuit current and electrical resistance for
periods up to 6 hr. Simultaneously, we measure the
flux of 14C-sucrose (an extracellular tracer) from
submucosa to lumen during 30-min periods. At a
predetermined time during the experiment, we re-
move the tissue, fix it, and prepare it for freeze
fracture. Small pieces of the trachea are fractured
and replicated in a freeze-etch device (Balzers,
Liechtenstein) with a double replica stage. We use
electron micrographs of freeze-fractured tracheal
tight junctions (Fig. 7) to quantitate the changes in
tight junctions associated with changes in electrical
resistance and permeability of the epithelium. We
used this method to study the effect ofremoving Ca2+
from the bathing solutions on the properties of the
epithelium. The Ca2+ free solution caused a decrease
in electrical resistance, an increase in permeability to
14C-sucrose and produced areas of disarray and
reorientation of the tight junction strands (11).

Summary
The control systems for the production and re-

moval of respiratory tract secretions may be altered
in disease. For instance, patients with cystic fibrosis
do not adequately clear the sticky secretions which
form in their airways, patients with severe asthma
plug their small airways with altered mucus, and
patients with chronic bronchitis produce excessive
amounts of secretion that must be removed from the
airway. Direct methods for studying the regulation of
the system in man are not available because the
mucus glands are inaccessible and the secretions
obtained at the mouth are contaminated. Previous
methods for studying the respiratory tract secretions
in animals did not identify the sources of the secre-
tions. We have developed new techniques using

animal tracheas in vitro and in vivo which allow us to
study the submucosal glands. We have shown that
the glands have a secretory response to cholinergic
agonists and stimulation of the vagus nerve and to
a-adrenergic and f3-adrenergic agonists.
We have shown that tracheal epithelium actively

transports C1- and Na+ and that the net movement of
these ions towards the lumen is increased by auto-
nomic agonists. Net movement of these ions may be
an important control of ion-mediated water flux into
the lumen. Furthermore, changes in the permeability
of the tissue may modify ion-mediated water move-
ment. Tightjunctions appeared to be altered reversi-
bly by changes in their external milieu. We speculate
that epithelial permeability may also be modified by
the autonomic nervous system. In the future, we
expect that a better understanding of the controls of
airway epithelial functions will lead to advances in
the treatment and prevention of airway disease.

We thank our colleague Todd Lempert for preparing the elec-
tron micrographs. The studies on tight junctions were performed
in collaboration with Dr. D. S. Friend. Dr. Davis is the recipient of
a NHLBI Young Investigator Research Award HL-21150. Some
of the reported studies were supported by grants from the U.S.
Public Health Service: Program Project Grants HL-06285 and
HL-24136, Pulmonary SCOR Grant HL-19156, and HD-10445 and
grants from the Cystic Fibrosis Foundation and the American
Lung Association of San Francisco.
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